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Desired 
reaction

Figures from: “Nuclear Reactions for Astrophysics” 
Thompson and Nunes

Compound nuclear (CN) reactions have two stages

“Optical model”

”𝞬SF and NLD”

Arrows = transition probabilities

CN cross section = (formation) 
  x (decay)

1. Formation 2. Decay

Target 
nucleus

Compound nucleus Residual nucleus
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Gamma-ray strength functions (gSF) approximate transition 
probabilities between (internal) states

3-6 Parameters per multipole type:
E1, E2, M1 transitions dominate

Enhanced Generalized Lorentzian (EGLO)
Usage: CN is at some excitation energy, what is the 
probability to emit a gamma-ray of a particular energy?
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▪ Direct methods: e.g. Photo absorption
▪ Indirect methods: e.g. Oslo methods, Surrogate methods

How are Gamma ray strength functions measured or 
constrained?
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Photo-absorption cross section as overlapping gamma-widths
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Photo-absorption cross section as overlapping gamma-widths

(Density of accessible states)
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Photo-absorption cross section as overlapping gamma-widths

(Density of accessible states)
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Photo-absorption cross section as overlapping gamma-widths

(Density of accessible states)

“Bartholomew definition”
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Shell Model takes all combinations of particle excitations in the 
valence space to capture many-body physics

Frozen core

Valence space

"∞" excluded states 49Ca in the sd-pf space

12 Protons 21 Neutrons

(Orders of magnitude smaller!)

Configurations: 1 x 107 Configurations: 9x 106
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Shell model can reproduce photoabsorption with a 1hw 
truncation

PNE 82, 102-106 (2015)
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Photo de-excitation “downward” to specific isolated states

“Swap” initial and final states:
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Photo de-excitation “downward” to another energy bin

● Low energy enhancement, “upbend”
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Photo de-excitation “downward” to another energy bin

● Low energy enhancement, “upbend”

PRC 98, 064321 (2018)

48Ca
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Definition of the “level density" is subtle

PRC 98, 064321 (2018)
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A simpler formula avoids a common mistake 

PRC 98, 064321 (2018)
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Ca-49 in the sdpf space with an Nmax 1 truncation

Only 2 major shells (sd and pf)

1 hbar-omega truncation
M-scheme dimension 3 million
500 lowest states
Transitions between all states (downward)
Simple smoothing

PRELIMINARY

PRELIMINARY
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Ca-49 in the sdpf space with an Nmax 1 truncation

Only 2 major shells (sd and pf)
- Missing states -> strength concentrated

1 hbar-omega truncation
M-scheme dimension 3 million
500 lowest states
Transitions between all states (downward)
Simple smoothing

PNE 82, 102-106 (2015)
3 Major Shells
1hw, (1+3)hw
Up from the g.s.

PRELIMINARY

PRELIMINARY

PRELIMINARY

PRELIMINARY
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Modeling GSF from the photoabsorption perspective

Decays to any lower state Decays only to the ground state

PRELIMINARY PRELIMINARY

PRELIMINARY

PRELIMINARY

PRELIMINARY



19
LLNL-PRES-853425

Shell Model takes all combinations of particle excitations in the 
valence space to capture many-body physics

Frozen core

Valence space

"∞" excluded states 49Ca in the sd-pf space

12 Protons 21 Neutrons

(Orders of magnitude smaller!)

Configurations: 1 x 107 Configurations: 9x 106



20
LLNL-PRES-853425

Shell model dimension

Because it includes so many correlated configurations
…shell-model has BIG dimensions!

One small problem…

49Ca~1015
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A factorized basis can provide efficient representations

49Ca in the sd-pf space

12 Protons 21 Neutrons
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Singular value decomposition of factorized amplitudes yields 
optimized basis

One can iteratively solve for the optimal basis 
states, but this is challenging in practice (T. 
Papenbrock 2004, 2005)

49Ca in the sd-pf space

12 Protons 21 Neutrons
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Our simplified approach:
Approximately-optimize the basis with subspace diagonalization
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Bipartite Factorization

Proton Hamiltonian

Neutron Hamiltonian

49Ca in the sd-pf space

12 Protons 21 Neutrons
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We had evidence that this would work; especially1 for Z > N
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(Orders of magnitude smaller!)

Bipartite Factorization

Proton Hamiltonian

Neutron Hamiltonian

Configurations: ~107

Configurations: ~106

Exact ground-state overlap with 
subspace eigenstates

1Johnson & Gorton 2023 (J. Phys. G 50, 045110)
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Proton and Neutron Approximate Shell Model (PANASH)
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(Orders of magnitude smaller!)

Couple basis

• Wave functions factorize into PN-partition eigenstates
• Coefficients decay exponentially 
• Proton neutron entanglement decreases when N>Z 

(arxiv 2210.14338)

Partit
ion

Solve

Recouple

Solve!

Truncate
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Shell model interaction 
uncertainty ~150 KeV
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Convergence of spectra (preliminary)

Ge70 is a complicated nucleus!

M-scheme untruncated dimension: 108

PANASH (this work) dimension: 104

(Untruncated)
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We can easily calculate M1 strength functions (1 major shell)

Preliminary NLD

Ge-78

GSF (M1 component)

Ge-78

PANASH (this work): used 30% of proton/neutron eigenstate components: 34x basis reduction

Agreement with results of Frauendorf & Schwengner (PRC 105, 034335, 2022) w/ similar interaction

Good agreement
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Our next ambition: E1 strength functions with 3 major shells

● No-core shell model
● Truncations within major shell will be required for heavier 

nuclei 
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What’s going on with beta-delayed neutron emission?

- Non statistical decay?
- Enhanced gamma-ray strength function?
- Forbidden decay contributions?
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Application of approximate shell model for statistical reactions
31
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PANASH truncation can approximate Gamow-Teller 
distributions

M-scheme dim: 141 million
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The nuclear shell model is an under-utilized source of statistical nuclear properties such 
as nuclear level densities and gamma-ray strength functions, both of which are 
fundamental to statistical nuclear reaction models used in nuclear data evaluations. In 
part, this is because accurate calculations for nuclei of astrophysical interest often 
require model spaces exceeding our computational resources. The large numbers of 
states required for statistical analysis compounds with the larger model spaces typically 
needed to include excitations of both parities, a pre-requisite for E1 gamma-ray 
strength functions. To address this, we have applied our proton-neutron shell model 
truncation scheme to approximate the wave functions typical shell model calculations 
cannot handle. In our benchmark cases, we find that this is an effective way to estimate 
the gamma-ray strength functions, while better methods already exist for nuclear level 
densities.

Abstract


