A Markov Chain Monte Carlo Tool for Hauser-Feshbach Codes

O. C. Gorton¹ and J. E. Escher²

¹San Diego State University ²Lawrence Livermore National Laboratory

2018 August 22

LLNL-PRES-757086 This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

<u>O. C. Gorton¹ and J. E. Escher² (¹San Diege MCMC St</u>

MCMC Surrogate Method

2018 August 22 1 / 16

Cross sections are probabilities expressed as areas

Figure 1: Neutron capture cross section $\sigma_{n\gamma}(E_n)$ for ${}^{90}Zr(n,\gamma)$ evaluated from experimental data.

Nuclear cross sections are important and data is not always available

Figure 2: Nuclear cross sections have applications in nuclear astrophysics, nuclear energy, and national security.

Figure 3: An important reaction with an unstable target.

1 Big Picture: Nuclear cross sections

2 Recent development: The Surrogate Method

The Surrogate Method is necessary because the microscopic theory of the compound nucleus cannot be computed accurately enough

Let's consider neutron capture reactions:

Hauser-Feshbach theory

$$\sigma_{n,\gamma}(E_n) = \sum_{J,\pi} \sigma_n^{CN}(E_{ex}, J, \pi) G_{\gamma}^{CN}(E_{ex}, J, \pi)$$
(1)

Surrogate reaction produces the compound nucleus whose γ -decay probability we need to compute the (n, γ) cross section

The decay model G_{γ}^{CN} is constrained by surrogate experimental data

Escher et al., "Constraining neutron capture cross sections for unstable nuclei with surrogate reaction data and theory" Phys. Rev. Lett. 121, 052501 – Published 31 July 2018.

- ${}^{90}Zr(n,\gamma)$ from ${}^{92}Zr(p,d\gamma)$ data test case
- ${}^{87}Y(n,\gamma)$ from ${}^{89}Y(p,d\gamma)$ data
- Approximate fitting method

1 Big Picture: Nuclear cross sections

2 Recent development: The Surrogate Method

I developed an interactive Python code for the Surrogate Method

"A Markov Chain Monte Carlo Tool for Hauser-Feshbach Codes" (MCHF)

Two general functions:

- Use Markov Chain Monte Carlo to constrain/fit parameters using (surrogate) data
- ② Sample a distribution of parameters to calculate cross sections

Markov Chain Monte Carlo (MCMC) and experimental data used to constrain parameters

Figure 4: MCMC applied to a simple two-parameter space. Sampling the parameter space with MCMC yields posterior distribution of parameters according to their χ^2 values.

The decay model G_{γ}^{CN} is constrained with MCMC by surrogate experimental data

Figure 5: Coincidence probabilities $P_{pd\gamma}(E) = \sum_{J\pi} F_{pd}^{CN} G_{\gamma}^{CN}$ vs projectile energy for ${}^{92}Zr(p,d)$ reactions.

<u>O. C. Gorton¹ and J. E. Escher² (¹San Diego</u>

MCMC Surrogate Method

We search for 5 level-density parameters and 9 gamma-ray strength function parameters to determine G_{γ}^{CN}

Figure 6: Posterior distribution of parameters from Markov Chain, which determine G_{γ}^{CN} .

By sampling the posterior parameter distribution we obtain constraints on the neutron capture cross section

Figure 7: ⁹⁰*Zr*(*n*, γ) cross section $\sigma_{n\gamma}(E_n) = \sum_{J\pi} \sigma_n^{CN} G_{\gamma}^{CN}$ obtained using the MCMC parameter distribution for G_{γ}^{CN} .

We track a number of metrics to assess convergence

Figure 8: χ^2 as a function of iteration number for several initial conditions.

Other metrics we use: (1) Total distribution of χ^2 values. (2) Distribution of a MCMC random walk parameter. (3) Parameter covariances.

<u>O. C. Gorton¹ and J. E. Escher² (¹San Diego</u>

MCMC Surrogate Method

Summary

Importance of these calculations:

- Reactions where experimental data doesn't exist
- Experimentally constrained with uncertainties

"A Markov Chain Monte Carlo Tool for Hauser-Feshbach Codes" (MCHF)

Previous calculation*:	This work:
Bayesian Monte Carlo	Markov Chain Monte Carlo
Proof of concept	General purpose and interactive
STAPRE	STAPRE, (TALYS and EMPIRE)**
Serial	Parallel

*Escher et al., "Constraining neutron capture cross sections for unstable nuclei with surrogate reaction data and theory" Phys. Rev. Lett. 121, 052501 – Published 31 July 2018.

Extra slides

Figure 9: (Left) Smooth χ^2 distribution. (Right) Jagged χ^2 distribution, indicative of non-convergence and/or poor choice of step size.

Figure 10: (Left) A random variable that appears to have structure. (Right) Another random variable with a greater number of iterations and a flatter distribution.

- Robustness / sensitivity
- Is P-normalization necessary?
- Are all of the parameters important? Random?
- Parameter importance

$$P_{\delta\pi}(E_{ex},\theta_{d}) = \frac{N_{d\gamma}(E_{ex},\theta_{d})}{\epsilon_{\gamma}N_{d}(E_{ex},\theta_{d})}$$
(4)
$$P_{\delta\pi}(E_{ex}) = \sum_{J,\pi} F_{\delta}^{CN}(E_{ex},J,\pi)G_{\gamma}^{CN}(E_{ex},J,\pi)$$
(5)

$$\sigma_{n,\gamma}(E_n) = \sum_{J,\pi} \sigma_n^{CN}(E_{ex}, J, \pi) G_{\gamma}^{CN}(E_{ex}, J, \pi)$$
(6)

An energy averaged statistical approach to modeling compound nuclear reactions

$$\frac{d\sigma}{dE} = \frac{\pi}{k^2} \sum_{J\pi} \frac{T_{\text{formation}} T_{\text{decay}}}{\sum T_{\text{discrete}} + \sum \int T_{\text{continuum}} \rho dE} W \rho$$
(7)

- T: Transmission coefficients for formation/decay of compound nucleus
- ρ : Level densities in the compound nucleus
- E: Energy of the incident particle
- σ : Cross section for a particular reaction channel
- W: 'Other statistical and correction factors'
- J: Angular momentum of compound nucleus
- π : Parity of compound nucleus

Program schematic

