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Specific Question: Truncating the many body basis
In one approach to solving the Schrodinger equation for the nucleus, we
represent the system as a matrix eigenvalue problem in what is called the shell
model (SM) approach. In this work I present preliminary work by myself and
my advisor Dr. Johnson, to truncate the basis space in which we frame the
computational problem.

Big Picture: Nuclear Structure
Detailed information about the structure and properties of atomic nuclei (the
center of atoms) are critical for a number of scientific and even national
security interests. Much of what is needed can be measured in a laboratory, but
for a significant number of calculations, nuclear scientists have to rely on
theoretical predictions from quantum mechanics. The problem theorists have is
that the quantum N-body problem -which you have to solve for each nucleus -
is a non-trivial computational task, with millions or billions of basis
dimensions.

For the informed: Some Formalism*

Results: Comparison to Full Model Space Solution
Comparison to the full shell model space calculations: with an approximation
reducing the model space to dimensions of roughly 105, we find that our energy
levels each fall within 0.25 MeV of the full solution (Table 2). This error is
comparable to full solution’s typical error of 0.1 MeV (Table 3). The full
solution requires a dimension around 109.

Conclusion
We have shown an order of magnitude reduction in the basis dimensions of our
model, while maintaining the same order of magnitude in the error of our
results. This method has potential applications to heavy-mass nuclei, where the
full model space dimensions can exceed the capacity of even cutting edge
supercomputers.

Figure 1. Ni 60 Low-Lying Energy Spectra
Here we see the convergence trend of the approximation method for low-lying
excitation spectra for Ni60. Each ‘stack’ of parallel lines represents the ten lowest
energy levels of the Ni 60 nucleus. As you move from left to right, the number of
eigenstates used to construct the model space basis increases, thus increasing the
accuracy of the approximation. The rightmost spectra with N=12022 was computed
on a supercomputer using another interacting shell model code and is guaranteed to
be the final converged value of these calculations.

Table 1. and Table 2. show the results for Ni 60 calculations: errors
relative to full model space diagonalization - which would otherwise
require a 1.1 billion x 1.1 billion matrix to be diagonalized! For
comparison, absolute uncertainties for a full solution are on the order of
0.1 MeV, relative to experiment.

Table 1. Ni 60 Low-Lying Excitation Spectra (N=200, dimension < 30k)

State J Eigenvalue [MeV] Excitation [MeV] Error [MeV]
1 0 -79.408 0.0000 ---
2 2 -77.809 1.5998 +0.1219
3 0 -77.442 1.9658 -0.1914
4 3 -77.321 2.0871 -0.3786
5 4 -77.243 2.1657 -0.2462
6 2 -77.240 2.1680 -0.2182
7 1 -76.813 2.5953 -0.2770
8 2 -76.724 2.6841 +0.1330
9 4 -76.404 3.0044 +0.1256
10 2 -76.332 3.0765 +0.1820

Table 2. Ni 60 Low-Lying Excitation Spectra (N=300, dimension < 70k)

State J Eigenvalue [MeV] Excitation [MeV] Error [MeV]
1 0 -79.630 0.0000 ---
2 2 -78.047 1.5829 +0.1050
3 0 -77.646 1.9841 -0.1731
4 3 -77.419 2.2113 -0.2544
5 2 -77.376 2.2537 -0.1325
6 4 -77.346 2.2842 -0.1277
7 1 -76.944 2.6865 -0.1858
8 2 -76.912 2.7180 +0.1669
9 2 -76.632 2.9977 +0.1032
10 4 -76.626 3.0045 +0.1257
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Method: Importance Truncation
By selecting the most important basis states, and leaving out the least important
basis states, it is possible to reduce the computational and memory
requirements of this problem by an order of magnitude. The method for
selecting basis states is to construct the mixed-proton-neutron basis out of
eigenstates of the pure-proton and pure-neutron solutions of the Hamiltonian*.
We present results for the medium mass nucleus Ni 60 which were computed
on a desktop workstation, where otherwise a supercomputer would have been
necessary.

How can we make this better?
Our next steps will be modify the single-species Hamiltonians to
introduce a mean field effect from each species compliment. This will
add back in some of the interaction that is left out, thus improving the
convergence rate of the results. We would also like to implement MPI
for parallel processing.

Table 4. Context for dimensions

N J Dimension Memory*(GB)
100 4 8,000 10-1
300 4 70,000 20
500 4 190,000 150
1000 4 760,000 2300

*Memory for Hamiltonian matrix.

Table 3. Context for accuracy: 
Full solution relative to experiment
State J Error* [MeV]
1 0 ---
2 2 +0.145
3 0 -0.128
4 2 +0.228
5 4 -0.094
6 3 -0.160
7 2 -0.573
8 1 -0.322
9 4 -0.241
10 2 -0.375


