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Specific Question: Temperature and entropy have both quantum and statistical (classical) counterparts. We propose to compute the entropy and temperature of nuclear systems in the shell model
framework using (1) The statistical distribution of energy levels in the nucleus (2) The quantum information entropy of the nuclear wave functions, and (3) the relatively novel proton-neutron
entanglement entropy. We predict that (1) and (2) will show good agreement, being derived from the same statistical formalism, but that (3), a strictly quantum concept, will have different properties.

Big Picture: Statistical physics in nuclear structure is a lesser known area of research in nuclear physics, yet it has the potential for revealing important properties of such systems. This is especially
true in the modern reincarnation of statistical physics, quantum information theory (QIT). This intersection of information theory and quantum mechanics, which has applications to quantum
computing and black holes, easily transfers to general quantum systems. In this work, I extent a statistical physics analysis of the nuclear shell model to include QIT.
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Fig. 5 Level density ΔΓ($) for 20Ne, computed in the sd-shell model
space: number of levels at a given excitation energy. Distribution is
roughly Gaussian and is fitted with a Gaussian model (dotted curve).
Temperature parameter k=8.1±0.2.

Interpretations of Entropy
Quantum Physics
A measure of missing information in 
our description of a system. 

' = −tr(, log ,)

Statistical Physics*
A measure of disorder, or 
complexity, of a system. 

' = log ΔΓ

Extension to Entanglement Entropy
Quantum Physics
A measure of missing information in 
our restricted-to-a –subspace 
description of a system.

-equivalently-
A measure of mutual information 
dependence of subsystems.

' = −tr(,0 log ,0)

Statistical Physics
No immediate analog.

Fig	1.	Proton-Neutron	Entanglement	Entropy	study:	 Scaling	the	
interaction	between	two	subspaces.

ℋJKJLM = ℋN ⨁ℋP
QRN ST ℋN; QRP ST ℋP
QR = QRN + QRP + W QRNP

W: Interaction scaling parameter
As expected, increasing the interaction strength increases the 
entanglement entropy! Mutual information dependence of the subsystems 
increases, and ignoring one subspace results in greater information loss.

*Classical Statistical Physics

Temperature and Entropy
Temperature in thermodynamics is defined by a partial
derivative:

1

X
=
Y'

Y$
I assume that the level density has a Gaussian form:
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I then can write a form for the entropy:

' $ = log Z − log 2`_] −
$ − $\

]

2_]
Finally, a form for the temperature:
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I compute a temperature parameter k using three different
methods: from the level density (statistical method), from the
entropy, and from the proton-neutron entanglement entropy. In
each case, I fit the corresponding functional form to the
calculated data and extract the parameter k.

Fig. 3 Entropy computed for each excitation
state’s wave function. Temperature parameter
k=12.1±0.4.

Level Density
Level density is the number of states that the system may occupy in a
given energy interval Δ$:

ΔΓ $ = Zcdefg Sh ifjfik eflmffT $ ± Δ$

Fig. 4 Proton-Neutron Entanglement Entropy
computed for each excitation state’s wave
function. Temperature parameter k=12.9±0.3.Quantum Mechanics

Quantum mechanics deals with Hermitian operators QR on a Hilbert space
ℋ (a vector space with additional features). The Schrodinger Equation

QRΨ = EΨ
is a description of the physical system in terms of a wave function Ψ ∈
ℋ, which represents a physical object like the nucleus. Solving the 
Schrodinger equation yields the wave function Ψ.

Fig. 2 Temperature for 20Ne based on fits to the Level
Density (Fig. 4), the wavefunction entropy (Fig. 2),
and the proton-neutron entanglement entropy (Fig. 3).
We see that the two quantum temperature calculations
are in better agreement with each other than the
statistical one.

Conclusions
The hypothesis was incorrect! I find that the proton-neutron entanglement entropy (3) has similar properties to the
entropy computed using the nuclear wave functions (2). In particular, they both start out with low energy at low 
excitation energies, increase to some maximum value near the middle of the spectrum, and fall back down in a relatively 
symmetric way. Surprisingly, these two entropies also produce similar temperature constants. This is in contrast to the 
temperature constant computed using the level density (1), which is significantly smaller. 

Analysis
It turns out that there are some underlying problems in comparing 
the quantum definition of entropy and temperature to the statistical 
one. 

Both entropy calculations shown in figures 3 and 4 have non-
zero entropy for the ground state and nearby excited states. This 
means that the ground states do not have simple representations in 
the shell model basis. Figure 5, on the other hand shows that the 
level density falls off rapidly at the tails. Computing ' = log ΔΓ of 
this plot would therefore generate an entropy curve that falls off to 
zero at the boundaries. This is at odds with the previous observation. 
Furthermore, level density is independent of the choice of shell 
model basis, unlike for the quantum entropy. 

The wider, larger k-parameter entropy curves from the quantum 
theory are indicative of the fact that the entropy, and therefore a level 
density computed from that entropy, does not go to zero at the 
boundaries.

It is interesting that the temperature computed from the proton-
neutron entanglement entropy is close to the wave function entropy
S. Future studies will investigate other entanglement entropies in the 
nuclear shell model and toy model systems.


